Search results for "MESH: Reactive Oxygen Species"

showing 4 items of 4 documents

Effects of a high-fat diet on energy metabolism and ROS production in rat liver.

2011

International audience; BACKGROUND & AIMS: A high-fat diet affects liver metabolism, leading to steatosis, a complex disorder related to insulin resistance and mitochondrial alterations. Steatosis is still poorly understood since diverse effects have been reported, depending on the different experimental models used. METHODS: We hereby report the effects of an 8 week high-fat diet on liver energy metabolism in a rat model, investigated in both isolated mitochondria and hepatocytes. RESULTS: Liver mass was unchanged but lipid content and composition were markedly affected. State-3 mitochondrial oxidative phosphorylation was inhibited, contrasting with unaffected cytochrome content. Oxidative…

Mitochondrial ROSMaleTranscription GeneticMESH : Reactive Oxygen SpeciesMitochondria LiverMESH : HepatocytesMitochondrionOxidative PhosphorylationMESH: Hepatocytes0302 clinical medicineMESH: Membrane Potential MitochondrialCitrate synthaseMESH: AnimalsBeta oxidationMESH : Electron Transport2. Zero hungerMembrane Potential Mitochondrial0303 health sciencesMESH : RatsAdenine nucleotide translocatorMESH: Energy MetabolismMESH: Reactive Oxygen SpeciesLipidsBiochemistryLiverMESH: Dietary FatsMitochondrial matrix030220 oncology & carcinogenesisBody CompositionMESH : Oxidative PhosphorylationATP–ADP translocaseMESH: Mitochondria LiverMESH: RatsMESH : Body CompositionMESH : MaleOxidative phosphorylationBiologyMESH : Rats WistarElectron Transport03 medical and health sciencesMESH: Oxidative Phosphorylation[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRats WistarMESH: Electron Transport[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyHepatologyMESH: Transcription GeneticMESH : Transcription GeneticMESH : LiverMESH : LipidsMESH: Body CompositionMESH: Rats WistarMESH: LipidsDietary FatsMESH: MaleRatsMESH : Energy MetabolismMESH : Membrane Potential MitochondrialMESH : Mitochondria Liverbiology.proteinHepatocytesMESH : AnimalsEnergy MetabolismReactive Oxygen SpeciesMESH : Dietary FatsMESH: Liver
researchProduct

Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

2007

International audience; Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substr…

Malemuscle atrophyMESH : Cell Aging[SDV]Life Sciences [q-bio]MESH : Reactive Oxygen SpeciesMitochondrion0302 clinical medicineGlycolysisMESH: AnimalsMESH : Muscle SkeletalMESH : Fatty AcidsCellular SenescencePhospholipidsMESH: Superoxide Dismutasereactive oxygen speciesMESH : Free Radicals0303 health sciencesMESH: Muscle SkeletalMESH : RatsFatty Acidsfatty acid profile of mitochondrial lipidsMESH: Reactive Oxygen SpeciesPyruvate dehydrogenase complexMESH: Fatty Acidsmitochondria[SDV] Life Sciences [q-bio]BiochemistryMESH: Cell AgingMESH: CalciumMESH : MitochondriaCell agingPyruvate decarboxylationmedicine.medical_specialtyFree RadicalsMESH: RatsCellular respirationMESH: MitochondriaMESH : MaleCell Respirationchemistry.chemical_elementOxidative phosphorylationBiologyCalciumMESH : Rats WistarMESH : Phospholipids03 medical and health sciencesMESH: Free RadicalsInternal medicinemedicineAnimalsMESH : Superoxide DismutaseRats WistarMuscle SkeletalMESH : Calcium030304 developmental biologyMESH: Phospholipidscalciumpermeability transition poreSuperoxide Dismutaseagingaging;calcium;fatty acid profile of mitochondrial lipids;mitochondria;muscle atrophy;permeability transition pore;reactive oxygen species;Animals;Calcium;Cell Aging;Cell Respiration;Fatty Acids;Free Radicals;Male;Mitochondria;Muscle;Skeletal;Phospholipids;Rats;Wistar;Reactive Oxygen Species;Superoxide DismutaseCell BiologyMESH: Rats WistarMESH: MaleRatsEndocrinologychemistryMESH : Cell RespirationMESH : AnimalsMESH: Cell Respiration030217 neurology & neurosurgery
researchProduct

Anti-inflammatory Lactobacillus rhamnosus CNCM I-3690 strain protects against oxidative stress and increases lifespan in Caenorhabditis elegans.

2012

International audience; Numerous studies have shown that resistance to oxidative stress is crucial to stay healthy and to reduce the adverse effects of aging. Accordingly, nutritional interventions using antioxidant food-grade compounds or food products are currently an interesting option to help improve health and quality of life in the elderly. Live lactic acid bacteria (LAB) administered in food, such as probiotics, may be good antioxidant candidates. Nevertheless, information about LAB-induced oxidative stress protection is scarce. To identify and characterize new potential antioxidant probiotic strains, we have developed a new functional screening method using the nematode Caenorhabdit…

MESH: Signal TransductionMESH: InflammationAgingAnatomy and PhysiologyAntioxidantMouseNon-Clinical MedicineApplied Microbiologymedicine.medical_treatment[SDV]Life Sciences [q-bio]MESH: HT29 Cellslcsh:Medicinemedicine.disease_causelaw.inventionMiceProbiotic0302 clinical medicinelawLactobacillusMESH: ColitisInsulinMESH: Animalslcsh:ScienceCaenorhabditis elegans2. Zero hunger0303 health sciencesMultidisciplinaryMESH: Oxidative StressbiologyMESH: Reactive Oxygen SpeciesForkhead Transcription FactorsAnimal ModelsMESH: Transcription FactorsMESH: Caenorhabditis elegans ProteinsColitis3. Good healthMESH: Trinitrobenzenesulfonic Acid[SDV] Life Sciences [q-bio]MESH: LongevityMedicineFemaleHT29 CellsResearch ArticleBiotechnologySignal TransductionMESH: Receptor Insulinmedicine.drug_classLongevityMESH: InsulinMicrobiologyAnti-inflammatoryMicrobiologyIndustrial Microbiology03 medical and health sciencesMESH: Gene Expression ProfilingModel OrganismsSpecies SpecificityLactobacillus rhamnosusMESH: Caenorhabditis elegansmedicineAnimalsHumansMESH: Species SpecificityCaenorhabditis elegansCaenorhabditis elegans ProteinsBiologyMESH: Mice030304 developmental biologyInflammationHealth Care PolicyMESH: HumansGene Expression ProfilingProbioticslcsh:Rbiology.organism_classificationReceptor InsulinLactobacillusOxidative StressTrinitrobenzenesulfonic AcidQuality of Lifelcsh:QPhysiological ProcessesReactive Oxygen SpeciesMESH: LactobacillusMESH: Female030217 neurology & neurosurgeryOxidative stressBacteriaMESH: ProbioticsTranscription Factors
researchProduct

Effect of oxidative stress on UDP-glucuronosyltransferases in rat astrocytes.

2012

WOS:000309170300003; International audience; The present work reports data regarding effects of an induced oxidative stress on the mainly expressed isoforms of UDP-glucuronosyltransferases (UGTs) in the brain. UGT1A6 and UGT1A7 expression and enzymatic activities toward the 1-naphthol were analyzed in rat cultured astrocytes following the exposure for 48 h to redox-cycling xenobiotic compounds such as quinones and bipyridinium ions. The expression of NADPH:cytochrome P450 reductase and NAD(P)H:quinone oxidoreductase 1 (NQO1) was also investigated. Oxidative stress induced significant deleterious changes in astrocyte morphology, decreased cell viability and inhibited catalytic function of UG…

MESH : Oxidative StressMESH : RNA MessengerAntioxidantTranscription Geneticmedicine.medical_treatmentToxicologyNAD(P)H:quinone oxidoreductase 1MESH: GlucuronosyltransferaseAntioxidantsSubstrate SpecificityRats Sprague-Dawley0302 clinical medicineMESH: NADPH-Ferrihemoprotein ReductaseMESH: GlucuronidesNAD(P)H Dehydrogenase (Quinone)MESH : CatalysisMESH: AnimalsMESH : NAD(P)H Dehydrogenase (Quinone)GlucuronosyltransferaseCells Culturedchemistry.chemical_classificationMESH : Cell Survival0303 health sciencesMESH : Substrate SpecificityMESH : Animals NewbornCytochrome P450 reductaseGeneral MedicineMESH: Cell SurvivalMESH: Pyridinium CompoundsMESH : AntioxidantsMESH: Cells CulturedOxidative phosphorylationGene Expression Regulation EnzymologicMESH : QuinonesMESH : Glucuronides03 medical and health sciencesRNA MessengerCell ShapeNADPH-Ferrihemoprotein ReductaseMESH : Oxidation-ReductionMESH : Pyridinium CompoundsMESH: NaphtholsMESH : GlucuronosyltransferaseMESH: AntioxidantsMESH: CatalysischemistryOxidative stressAstrocytesReactive Oxygen Species030217 neurology & neurosurgeryMESH: Oxidation-ReductionTime Factors[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionMESH : Reactive Oxygen SpeciesNADPH:cytochrome P450 reductasePyridinium CompoundsNaphtholsMESH: Rats Sprague-DawleyProtein oxidationmedicine.disease_causeMESH: Animals NewbornMESH: NAD(P)H Dehydrogenase (Quinone)Protein CarbonylationMESH : OxidantsMESH: OxidantsMelatoninMESH: MelatoninMESH: Oxidative StressMESH : MelatoninMESH : RatsMESH: Gene Expression Regulation EnzymologicQuinonesMESH: Reactive Oxygen SpeciesOxidantsBiochemistryMESH : Protein CarbonylationOxidation-ReductionUDP-glucuronosyltransferaseMESH : Time FactorsMESH: Protein CarbonylationMESH: RatsCell SurvivalMESH : NaphtholsBiologyCatalysisMESH: QuinonesMESH : Gene Expression Regulation EnzymologicGlucuronidesMESH : Cells CulturedmedicineAnimalsMESH: Cell Shape030304 developmental biologyMESH: RNA MessengerReactive oxygen speciesMESH: Transcription GeneticMESH: Time FactorsMESH : AstrocytesMESH : Transcription GeneticNAD(P)H Dehydrogenase (Quinone)MESH : Rats Sprague-DawleyRatsMESH: AstrocytesAnimals NewbornMESH : NADPH-Ferrihemoprotein ReductaseMESH: Substrate SpecificityMESH : AnimalsNAD+ kinaseMESH : Cell Shape[SDV.AEN]Life Sciences [q-bio]/Food and NutritionOxidative stress
researchProduct